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In this work, we extend previous analyses of ac electro-osmosis to account for the combined action of two
experimentally relevant effects: �i� Faradaic currents from electrochemical reactions at the electrodes and �ii�
differences in ion mobilities of the electrolyte. In previous works, the ac electro-osmotic motion has been
analyzed theoretically under the assumption that only forces in the diffuse �Debye� layer are relevant. Here, we
first show that if the ion mobilities of a 1-1 aqueous solution are different, the charged zone expands from the
Debye layer to include the diffusion layer. We later include the Faradaic currents and, as an attempt to explore
both factors simultaneously, we perform a thin-layer, low-frequency, linear analysis of the system. Finally, the
model is applied to the case of an electrolyte actuated by a traveling-wave signal. A steady liquid motion in
opposite direction to the applied signal is predicted for some ranges of the parameters. This could serve as a
partial explanation for the observed flow reversal in some experiments.

DOI: 10.1103/PhysRevE.81.016320 PACS number�s�: 47.61.�k, 47.57.jd, 82.45.�h, 85.85.�j

I. INTRODUCTION

Alternating electric fields can generate a net steady mo-
tion of aqueous saline solutions over microelectrode struc-
tures. The term ac electro-osmosis �ACEO� �1–3� refers to
the fluid motion generated on top of electrodes by the inter-
action between an ac electric field and the electrical charge
that this field induces at the electrode/electrolyte interface—
i.e., the charge induced in the electrical double layer �DL�.
ACEO flows are receiving growing interest in microfluidic
applications because the integration of microelectrodes into
microchannels makes possible the local actuation of electro-
lytes by means of electric fields �4,5�. Unidirectional fluid
flow using ACEO has been demonstrated using either arrays
of asymmetric electrodes energized by a single ac signal
�6,7� or arrays of symmetric electrodes energized by a
traveling-wave �TW� signal �8,9�. Bazant and Squires
�10,11� analyzed different fluid flows originated by electric
fields acting upon the induced charge in the double layer of
polarizable objects and suggested the term induced-charge
electro-osmosis to include all these phenomena.

The mechanism responsible for fluid pumping in the case
of microelectrodes actuated by a traveling-wave signal of
small amplitude is shown in Fig. 1. In experiments, the TW
potential is typically generated using a four-phase ac signal
applied to successive quadruplets of electrodes �Fig. 1, left�.
After application of a TW potential to the electrodes, coun-
terions accumulate in the double layer at the interfaces be-
tween electrodes and electrolyte. The induced charge in the
double layer lags behind the applied signal due to the finite
charging time of the double layer. The ions are, therefore,
subjected to a tangential electrical force in the direction of
the traveling wave that, by viscous friction, is transmitted to
the fluid. The characteristic charging time of the double layer
is given by the product of the typical resistance of the bulk
L /�S and the typical capacitance of the double layer �S /�D,

tc= �� /���L /�D�. Here, � and � are the permittivity and con-
ductivity of the liquid, respectively, L and S denote the typi-
cal length and area of the system, and �D is the Debye
length. This charging time typically lies in the range of mil-
liseconds. If the period of the applied signal, T, is very large
compared to tc counterions have time to accumulate in the
double layer. The electrical force is, then, mainly normal to
the surface and negligible flow occurs. If the period of the
applied signal T is much shorter than tc the accumulation of
induced charge in the double layer becomes negligible and,
again, no lateral motion is generated. Maximum lateral force
and fluid flow occur for T� tc, which typically corresponds
to an applied frequency in the range of kilohertz.
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FIG. 1. �Color online� �a� Diagram showing a microelectrode
array subjected to a four-phase ac signal to produce a traveling-
wave potential. �b� Scheme of traveling-wave electro-osmosis
�TWEO� mechanism: the induced charge in the DL lags behind the
applied signal due to the finite DL charging time. The tangential
field produces a force in the direction of the wave for both positive
and negative ions, resulting in steady liquid motion.
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The simplest form of ac electro-osmosis theory �1,2� is a
linear theory �valid for small applied voltage� that assumes
that only forces in the diffuse layer are present and that the
electrodes are perfectly polarizable, i.e., there are no Fara-
daic currents. In most cases, the predictions of the ACEO
theory reasonably explain experimental observations at volt-
ages smaller than 5 Vp.p. when using pairs of symmetric
electrodes �3,12�, as well as those observations at voltages
smaller than 2–3 Vp.p. with arrays of electrodes �6–9,13�.
However, the theory also presents many quantitative discrep-
ancies with observations and, for certain ranges of liquid
conductivity, frequency, and voltage, even the direction of
the liquid motion is opposite to the ACEO prediction �flow
reversal� �7,9,13,14�.

Recently, the effects of the finite size of ions �crowding
effects� have been included into the Poisson-Boltzmann
equation �15,16�. This model has yielded a possible explana-
tion �17� for the flow reversal observed by Studer et al. with
arrays of electrodes of different widths �7�. For this predic-
tion, it is essential that electrodes of different widths show
different charging times due to nonlinear crowding effects.
This reasoning is not valid for arrays of electrodes subjected
to traveling-wave potentials, where all electrodes have the
same width.

Another aspect of the experiments at larger applied poten-
tials is that the assumption of perfectly polarizable electrodes
is not valid anymore and Faradaic currents occur. Olesen et
al. �18� and Ramos et al. �19� generalized the ACEO theory
by considering Faradaic reactions at the electrodes. These
works only considered forces inside the Debye layer and, as
a general result, obtained that Faradaic currents depolarize
the electrode-electrolyte interface leading to lower electro-
osmotic velocities. In a recent work, García-Sánchez et al.
�20� showed that Faradaic currents occur in TWEO experi-
ments for applied signals typical of flow reversal. In some
cases, the electrical current variation in time was clearly cor-
related with the observed flow reversal in these TWEO ar-
rays. García-Sánchez et al. showed in further experiments
�21� that electrochemical reactions lead to a decrement of pH
near electrodes. The concentration of H+ increases and it can
become comparable or even larger than the concentrations of
ions coming from the salt �KCl at a concentration of 0.1
mM�. The mobility of H+ is much higher than that of K+ or
Cl− and, therefore, the implicit assumption made in previous
ACEO models that the difference in mobility of ionic species
was unimportant may result too simplistic. García-Sánchez
et al. �21� also reported oscillations of total ionic concentra-
tion close to the electrodes originated by Faradaic currents
for voltage amplitudes of 6 Vp.p. at low frequencies. The
penetration length of these oscillations behaved as l���
��D /��1/2 �where D is a diffusion constant�, which is ex-
pected for a diffusion layer. In addition, they presented pre-
liminary numerical computations of electrically induced fluid
flows for the case of two ionic species with different mobili-
ties. These computations took into account specifically the
induced charge and electrical force outside the Debye layer
in the diffusion layer. They showed that the electric field
acting on the charge induced in the diffusion layer can lead
to reverse flow, although the motion generated in the Debye
layer was completely ignored in these computations.

Motivated by this, we aim to extend previous theoretical
analysis of Faradaic currents in ACEO by considering a 1-1
electrolyte with ions of different mobilities. The paper is or-
ganized as follows. First, we present the mathematical model
and approximations to the problem. We then obtain a gener-
alized boundary condition for the electrical potential on elec-
trodes. Subsequently, we derive a general expression for the
electro-osmotic slip velocity that accounts for the stresses in
the Debye and diffusion layers. Finally, we apply the model
to the particular case of a single mode traveling-wave poten-
tial. The model predicts flow reversal for the specific condi-
tions of a compact layer thickness of the order of the Debye
length or greater, facile Faradaic currents, and a large asym-
metry in ion mobilities.

II. MATHEMATICAL MODEL

We consider a 1:1 aqueous solution X+Y− �e.g., Na+Cl− or
K+Cl−� placed on top of an array of electrodes subjected to
an ac signal �Fig. 2�. We are mostly interested in the behavior
of the system close to the plane of the electrodes. Above this
plane, following previous models �22� we distinguish three
distinct layers: compact, diffuse, and diffusion. ac electro-
osmosis is usually explained in terms of the phenomena that
happen in the combination of compact and diffuse layers
�known as electric double layer, abbreviated as EDL�. In this
paper, we also examine the effect of the charges situated in
the diffusion layer. Because of this, we use the expression
“extended double layer,” hereafter referred as XDL, to the
combination of the three layers.

In our model we only include two charged species and
consider the pair of ions to be asymmetric in the sense that
their mobilities are different. For simplicity, we assume that
the cations react reversibly at the electrodes to produce neu-
tral molecules according to a simple one-step one-electron
redox process of the form X++e−↔X and that the electrodes
are blocking for the anions. The sign of the reacting species,
however, is not essential to the model. The introduction of
the chemical reaction requires the inclusion of one neutral
species, X, in the mathematical analysis.
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FIG. 2. �Color online� Structure of the extended double layer
�XDL� on an array of electrodes subjected to an ac potential. Three
distinct layers are indicated: compact layer �formed by fixed ad-
sorbed ions and water molecules�, diffuse layer �where thermal and
electric forces are of the same order�, and diffusion layer �associ-
ated to the finite diffusion penetration length for the different spe-
cies�. The outer Helmholtz plane �OHP� is localized between the
compact and diffuse layers.
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In our system, there is an ac applied voltage on the elec-
trodes and this signal induces charges and motion in the liq-
uid. Hence, we are interested not in the total voltage drop
across the XDL but only in the excess over the equilibrium
dc voltage. For simplicity, we will assume that dc equilib-
rium voltage is very small and can be neglected. The behav-
ior of our system can be modeled in terms of four functions:
the electric potential, �, and the densities of positive, nega-
tive, and neutral species, c+, c−, and c0, respectively. Our
model describes a two-dimensional system, which approxi-
mates the behavior of a solution on top of an array of elec-
trodes in the form of long strips. We denote as x the coordi-
nate tangential to the plane of the electrodes and as y the
coordinate normal to this plane. The different quantities
verify the Poisson-Nernst-Planck �PNP� equations in the
half-plane y�0, with boundary conditions at the OHP, y=0
�23�.

The electric potential obeys Poisson’s equation,

�2� = −
e

�
�c+ − c−� , �1�

while the particle densities satisfy Nernst-Planck equations,

�c+

�t
+ � · F+ = 0, F+ = 	+c+E − D+ � c+ + c+v , �2�

�c−

�t
+ � · F− = 0, F− = − 	−c−E − D− � c− + c−v , �3�

�c0

�t
+ � · F0 = 0, F0 = − D0 � c0 + c0v . �4�

The diffusion coefficients and ionic mobilities are related
through the Einstein relation: D+ /	+=D− /	−=kBT /e, where
kB is the Boltzmann constant, T is the absolute temperature,
and e is the elementary charge.

To these equations we must add the Stokes equation for
the liquid motion,

� · v = 0, �5�

0 = − �p + 
�2v + �E , �6�

with �=e�c+−c−�.
The boundary conditions at the OHP �y=0� for these

functions are the continuity of the displacement vector, as-
suming a linear compact layer of width �s and permittivity �s
�19,24�,

�s

�s
��s = − �

��

�y
, �7�

where ��s denotes the voltage drop across the compact layer
�Fig. 2�,

��s = Vs�x,t� − ��y = 0� . �8�

We assume that the electrodes are blocking to the anions,

0 = uy · F− = 	−c−
��

�y
− D−

�c−

�y
, �9�

whereas the fluxes of positive and neutral species are related
through Faradaic currents,

− 	+c+
��

�y
− D+

�c+

�y
=

JF

e
, �10�

− D0
�c0

�y
= −

JF

e
. �11�

To model this current we use the Butler-Volmer equation
�23–25�,

JF

e
= K0c0 exp�e��s

kBT
� − K+c+ exp�−

�1 − �e��s

kBT
� ,

�12�

with  as the transfer coefficient, where the reaction con-
stants K0 and K+ are related by the equilibrium condition
K0c0

eq=K+c+
eq. In this equation, we introduce the Frumkin cor-

rection �25� from the beginning and assume that the voltage
drop that appears in Eq. �12� corresponds to the one between
the electrodes and the OHP �Fig. 2� �24�. Note that we do not
consider effects due to the adsorption of movable ions.

The boundary condition for the liquid velocity at the OHP
is the no-slip condition

v = 0 . �13�

The equations can be made dimensionless using adequate
scales. We choose the following: the equilibrium concentra-
tions ceq for the charged species and c0

eq for the neutral spe-
cies; the thermal voltage kBT /e for the electric potential; the
Debye length �D for the normal �y� coordinate, with the De-
bye length given by ��kBT /2e2ceq�1/2; a typical macroscopic
length L for the tangential �x� coordinate �for instance, in the
case of a traveling-wave signal, L is of the order of the wave-
length�; the reciprocal of the angular frequency, 1 /�, for the
time; 2eceqD+ /�D for the current density; ��kBT /e�2 /
L for
the liquid velocity; and ��kBT /e�D�2 for the pressure.

Instead of the ionic concentrations, we will use as un-
knowns the charge density � and the mean ion concentration
c= �c++c−� /2, defined in dimensionless form as �̄
= �c̄+− c̄−� /2 and c̄= �c̄++ c̄−� /2.

Using these scales the complete system is written in di-
mensionless form as

�2�2�̄

� x̄2 +
�2�̄

� ȳ2 = − �̄ , �14�

	�̄
�

� t̄
+ Pe�ū

�

� x̄
+ w̄

�

� ȳ
�
��̄ − �c̄�

=
�

� ȳ
�c̄

��̄

� ȳ
+

� �̄

� ȳ
� + �2 �

� x̄
�c̄

��̄

� x̄
+

� �̄

� x̄
� , �15�
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	�̄
�

� t̄
+ Pe�ū

�

� x̄
+ w̄

�

� ȳ
�
�c̄ − ��̄�

=
�

� ȳ
��̄

��̄

� ȳ
+

� c̄

� ȳ
� + �2 �

� x̄
��̄

��̄

� x̄
+

� c̄

� x̄
� , �16�

	�̄
�

� t̄
+ Pe�ū

�

� x̄
+ w̄

�

� ȳ
�
c̄0 = D̄0� �2c̄0

� ȳ2 + �2�2c̄0

� x̄2 � ,

�17�

� ū

� x̄
+

�w̄

� ȳ
= 0, �18�

0 = −
� p̄

� x̄
+ �2�2ū

� x̄2 +
�2ū

� ȳ2 − �̄
��̄

� x̄
, �19�

0 = −
� p̄

� ȳ
+ �2�2w̄

� ȳ2 + �4�2w̄

� x̄2 − �̄
��̄

� ȳ
. �20�

The boundary conditions at ȳ=0 are

��̄s = − �̄s
��̄

� ȳ
, ��̄s = V̄s�x̄, t̄� − �̄�ȳ = 0� , �21�

− c̄
��̄

� ȳ
−

� �̄

� ȳ
= J̄F, − �̄

��̄

� ȳ
−

� c̄

� ȳ
= J̄F,

− D̄0�1 − ��
� c̄0

� ȳ
= − NJ̄F, �22�

J̄F = G�c̄0 exp���̄s� − �c̄ + �̄�exp�− �1 − ���̄s�� ,

�23�

ū = 0, w̄ = 0. �24�

This system depends on a set of dimensionless parameters1:
�i� Asymmetry: �= �D+−D−� / �D++D−�= �	+−	−� /

�	++	−�. The parameter � measures the asymmetry of the
solution, ranging from −1 �immobile cations� to +1 �immo-
bile anions�; for �=0 we have a complete symmetric elec-
trolyte. The values for some common ion pairs are provided
in Table I �using data from �28��.

�ii� Diffuse layer thickness: �=�D /L. This parameter mea-
sures the thickness of the diffuse layer �the Debye length�
compared to the typical macroscopic length. For an experi-
ment using electrodes in the range of tens of microns, this
parameter is usually very small, in the range of 10−3 �since
the Debye length can be in the range of tens of nanometers
while the electrodes have tens of microns�. In what follows
we will take �=0.001 in the numerical calculations except
otherwise indicated.

�iii� Compact layer thickness: �̄s= �� /�D� / ��s /�s� gives
the ratio between the capacitance of the diffuse layer to the
compact layer. This can be interpreted as a ratio between

effective thicknesses: �̄s= ���s /�s� /�D.
�iv� Frequency: �̄=��D

2 /D scales the frequency of the
applied signal in terms of the relaxation frequency of the
solution. Here D is the ambipolar diffusivity, defined as D
=2D+D− / �D++D−� �22�. The dimensionless frequency is
usually small in the case of ac electro-osmotic flow, of order
� or smaller in most experimental cases. Because of this, it is
useful to introduce a rescaled frequency, �= ��� /���L /�D�
= �̄�1−�2� /�, which is typically of order unity in the ACEO
regime. This frequency � uses the relaxation time of the RC
circuit formed by the double layer capacitance and the bulk
resistance.

�v� Voltage amplitude: V̄0=eV0 /kBT measures the applied
voltage. Since kBT /e is approximately 25 mV, typical values
of the dimensionless amplitude can be in the range of
101–102.

�vi� Reaction conductance: G=�DK+ /2D+=�D /Rct��1
+��, with Rct as the specific charge transfer resistance for the
Faradaic reactions Rct=kBT /ceqe2K+. It measures the facility
of the chemical reaction. The changes in this parameter be-
come important when the charge transfer is comparable to
the bulk specific resistance �Rct�L /��. Because of this, a
more meaningful combination is the ratio G /�=L /Rct��1
+�� �typical bulk resistance divided by charge transfer resis-
tance�. A small value of G /� means that the reaction at the
electrodes is blocked, while a large value gives the facile
kinetic regime, for which the chemical reaction is almost at
equilibrium. We also use the dimensionless reaction resis-
tance defined as Rs=1 /G, proportional to Rct.

�vii� Neutral species diffusivity: D̄0=D0 /D measures the
diffusivity of the neutral species compared to the ambipolar
diffusivity.

�viii� Relative concentration: N=2ceq /c0
eq measures the

fraction of charged species compared to the neutral one. A
small value of N corresponds to a bath of neutral species. A
large value of N implies that there are little neutral species
available.

�ix� Péclet number: Pe=u0�D
2 /LD gives the importance of

the advective currents to the diffusion currents inside the
double layer.

In what follows, unless otherwise noted, we will assume
that all quantities are nondimensional and drop the overbars.

III. APPROXIMATIONS

We are interested mainly in the solution for the electro-
mechanical problem inside the diffuse and diffusion layers in

1The transfer coefficient  will disappear in our linear analysis
and we do not include it on the list of dimensionless parameters.

TABLE I. Values of the parameter �= �D+−D−� / �D++D−� for
some ion pairs.

� K+ Na+ H+

Cl− −0.019 −0.207 +0.642

OH− −0.459 −0.596 +0.277
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order to obtain integrated boundary conditions for the prob-
lem in the bulk. To achieve this, we make a series of assump-
tions:

Negligible advective currents. The role of advection might
be important in the bulk, but inside the double layer typical
values of the Péclet number are in the range of 10−6. Inside
the diffusion layer the typical length is proportional to �−1/2

and the effective Péclet number inside this layer, for typical
values of the frequency in ac electro-osmosis, is Pe�=Pe /�
�10−3, which is still very small. In addition, we will assume
that the diffusion coefficient for the neutral species is not so
low that advection becomes the dominant factor in the spe-
cies dispersion. This allows us to neglect advection and omit
the corresponding terms in Eqs. �15�–�17� as long as y is
moderate. With this approximation the electrical problem de-
couples from the mechanical one, and we can solve first for
the electric potential, charge density, and mean concentration
and use the resulting force to calculate the liquid velocity.

Linearization of PNP equations. The system can be lin-
earized expanding the quantities in powers of V0. This choice
may be questionable since the parameter V0 can be in the
range of 40 or more. Because of this, we must understand the
following results as a partial explanation of the mechanisms
underlying ac electro-osmosis with Faradaic currents. A com-
plete analysis must be fully nonlinear.

For the concentrations we have the perturbations over the
equilibrium state, while the electric potential and the charge
density vanish at zero order,

� = O�V0�, � = O�V0� , �25�

c = 1 + n, n = O�V0�, c0 = 1 + n0, n0 = O�V0� .

�26�

The linearization of the system allows us to use complex
amplitudes �phasors� as the applied signal is of the form

Vs�x,t� = Vs�x�eit + Vs
��x�e−it = 2 Re�Vs�x�eit� . �27�

In the particular case of a single mode traveling wave
Vs�x , t�=V0 cos�t−x� and Vs�x�=V0 exp�−ix� /2. As re-
sponses to this signal, �, �, n, and n0 admit a similar expan-
sion to Eq. �27�.

Since the equilibrium dc voltage is assumed to be zero,
the liquid velocity is generated by the coupling of the time-
varying charge with the ac electric potential and thus is qua-
dratic in V0, v=O�V0

2�. The same happens with the pressure,
p=O�V0

2�. The resulting liquid velocity and pressure will be a
combination of terms oscillating with twice the frequency of
the applied signal plus a time-independent term. We will be
interested in the latter term because it means steady liquid
motion, the one usually observed in experiments.

Thin layer approximation. The following approximation
consists in taking into account that both the Debye length,
�D, and the diffusion layer thickness �proportional to �−1/2�
are much smaller than the typical transversal length, L. In
terms of the parameters, this means that ��1 and � is not
much smaller than �2.

With this approximation we can neglect terms of order �2

in the system as, for example, the second derivatives in the
tangential coordinate, x. As a consequence, the dependences
on x and y decouple and the electrical problem inside the
XDL becomes effectively one-dimension, acting the tangen-
tial coordinate as a parameter.

To complete the one-dimensional problem we need
boundary conditions for y going to infinity, which physically
means moving outside the XDL to the bulk. We assume that
in this limit the concentrations tend to their equilibrium val-
ues and the liquid becomes electroneutral,

n → 0, � → 0, n0 → 0, �28�

while the electric potential matches asymptotically its value
in the bulk. To perform the asymptotic matching we define
an outer normal coordinate yo=�y, scaled using the same
macroscopic length L that we used to scale x. If � is the
outer electric potential, the matching implies �see Appendix
A for a geometrical explanation�

lim
y→�

yo→0

�1

�

��

�y
−

��

�yo
� = 0, �29�

lim
y→�

yo→0

	�� − y
��

�y
� − �� − yo

��

�yo
�
 = 0. �30�

These matching relations will allow us to obtain a Robin-
type boundary condition, ��+n ·��= f , for the outer po-
tential once we have solved the inner problem.

Taking into account all the approximations we obtain the
following set of linear equations for the electrical problem
inside the XDL:

�2�

�y2 = − � , �31�

�2�

�y2 = �1 + i��� − i��n , �32�

�2n

�y2 = − i��� + i�n , �33�

�2n0

�y2 =
i�

D0
n0. �34�

One particular combination of Eqs. �31�–�33� that is espe-
cially useful to determine the solution is the charge conser-
vation equation,

�2

�y2 ��1 + i��1 − �2��� + � + �n� = 0. �35�

The linear boundary conditions at y=0 for the complex am-
plitudes are

��s = − �s
��

�y
, ��s = Vs�x� − ��y = 0� , �36�
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−
��

�y
−

��

�y
+

�n

�y
= 0, −

�n

�y
= JF,

− D0�1 − ��
�n0

�y
− N

�n

�y
= 0, �37�

JF = G�n0 − n − � + ��s� . �38�

Low frequency range. Experiments show that the maxi-
mum velocity is obtained at low frequencies, of order � �in
our case, a typical value of � is 0.001, which corresponds to
a dimensional frequency: �� /����D /L��103 rad /s or
smaller�. Because of this, in our analysis we will be inter-
ested in dimensionless frequencies much smaller than unity,
so that the system behaves quasistatically. In addition to the
complete linear solution, we will perform an expansion in
powers of � in order to provide results which are more easily
interpreted. The low-frequency domain of these asymptotic
solutions has a lower bound since � must not be so low that
the diffusion layer thickness becomes of the order of the
macroscopic length. In terms of the parameters, this means
that � must not be much smaller than �2.

Looking at Eqs. �31�–�34�, we can see that for ��1 the
different concentrations decay mainly along different dis-
tances: the charge density decays along a length unity �i.e.,
the Debye length in the double layer�, the excess on the
mean concentration along a length proportional to �−1/2 �the
diffusion layer�, and similarly for the neutral species
�� /D0�−1/2.

IV. SOLUTION INSIDE THE XDL

A. Complete linear system in the thin-layer approximation

Equations �31�–�34� can be solved for the four functions,
resulting in a combination of exponentials,

� = �f1e−s1y + f2e−s2y − Yy����x� + �0�x� , �39�

� = ��1e−s1y + �2e−s2y����x� , �40�

n = �n1e−s1y + n2e−s2y����x� , �41�

n0 = a0e−s0y���x� . �42�

In these equations, we have factored out the dependence on
the tangential coordinate and introduced the total voltage
drop across the XDL so that the individual voltage drop
across the compact, diffuse, and diffusion layers can be ex-
pressed as fractions of the total voltage drop �Fig. 2�,

��s = fs��, ��diffuse = f1��, ��diffusion = f2�� ,

�43�

fs + f1 + f2 = 1, �44�

where f1, f2, and fs are complex quantities. The Faradaic
current density JF can also be expressed as

JF = jF�� . �45�

The decay factors for the three exponentials are

s1 = � + i� = 1 + O���, Re�s1� � 0 with

� = �1 + 1 − 4�2�2�/2, �46�

s2 = 1 + i� − � = i� + O��3/2�, Re�s2� � 0, �47�

s0 = i�

D0
, Re�s0� � 0. �48�

For low frequencies the exponent s1 tends to unity �i.e., the
dimensional decay length is the Debye length� while s2 goes
as �i��1/2, which is proportional to the reciprocal of the dif-
fusion length for the charged species. The last exponent
gives the diffusion length for the neutral species. According
to these behaviors, we can associate f1 with the voltage drop
across the diffuse layer and f2 with the one across the diffu-
sion layer. Nevertheless, for high values of the asymmetry �
and frequency, the two factors actually cross �Fig. 3� and the
two layers cease to be distinct. For �=0.64 �case of H+Cl−�
and �=0.001, this occurs at the �dimensional� frequency �
=0.46� /�.

In Eq. �39� the electric potential includes a term indepen-
dent of y, �0�x�, and a linear one, �−Y���x��y. These two
terms work as boundary conditions for the outer electric po-
tential. Using the matching conditions �29� and �30� we ob-
tain for the outer potential

lim
yo→0

� ��

�yo
� = lim

y→�
�1

�

��

�y
� = −

Y

�
�� , �49�

lim
yo→o

��� = lim
y→�

�� − y
��

�y
� = �0. �50�

Using that ��=Vs−�0, we can reduce the two matching
conditions to a single Robin boundary condition for the outer
potential,

− �
��

�yo
= Y��, �� = Vs − � �yo = 0� . �51�

The quantity Y represents the ratio between the current den-
sity that goes through the XDL and the voltage drop across
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FIG. 3. �Color online� Real part of the decay factors for �a� an
aqueous solution with equal ion mobilities and �b� one with very
different ones. The eigenvalues have been plotted against the res-
caled frequency �=��1−�2� /�. For equal ion mobilities, the decay
lengths �thicknesses of the diffuse and diffusion layers� are distinct,
but for highly asymmetrical diffusion they are closer and can even
intersect: the distinction between the layers vanishes.
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this layer. This quantity can be understood as the �dimension-
less� specific admittance of the XDL.

Substituting in the differential equations we obtain the
algebraic equations that relate the coefficients

�1 + i��1 − �2��f1 + �1 + �n1 = 0, �52�

�1 + i��1 − �2��f2 + �2 + �n2 = 0, �53�

�n1 + i���1 = 0, �54�

��2 − i��n2 = 0, �55�

where � is defined in Eq. �46�.
From Eq. �55�, if the system is symmetrical ��=0� the

charge exists only in the diffuse layer since �2=0. Moreover,
for a completely symmetrical electrolyte the excess in the
mean concentration decays only in the diffusion layer as n1
=0 from Eq. �54�. The presence of asymmetry implies that
there is a charge density inside the diffusion layer, which
must be taken into account to calculate the electro-osmotic
slip velocity. For small frequencies, this charge density is
small �at least of order �� and the total charge inside the
diffusion layer is also small �of order �1/2�, but the voltage
drop f2 associated with it �which appears in the Smolu-
chowski formula� may be of order unity and have a signifi-
cant contribution to the slip velocity.

Substituting the solutions in the boundary conditions we
get another set of algebraic equations for the coefficients

fs = �s�s1f1 + s2f2 + Y� , �56�

s1��1 + f1 − n1� + s2��2 + f2 − n2� + Y = 0, �57�

s1n1 + s2n2 = jF, �58�

N�s1n1 + s2n2� + D0�1 − ��s0a0 = 0, �59�

jF = G�a0 − n1 − n2 − �1 − �2 + fs� . �60�

In addition we have the condition on the amplitudes,

fs + f1 + f2 = 1. �61�

The system of ten equations �Eqs. �52�–�61�� can be solved
completely for any values of the parameters for the ten un-
knowns: f1, f2, fs, �1, �2, n1, n2, a0, Y, and jF. The complete
solution is included in Appendix B.

Equations �48� and �59� imply that the relative concentra-
tion N and diffusivity D0 appear together through the com-
bination W0=N / ��1− ��D0

1/2� �since there is a factor D0
−1/2

inside the decay factor s0�. That means that reducing the
concentration of the neutral species �raising N� is equivalent
to lowering its diffusivity.

B. Low frequency domain

We can expand the equations and their solutions in pow-
ers of the square root of the dimensionless frequency �1/2

because as already mentioned the peak in the ac electro-

osmotic velocity is obtained when ����0.001 or smaller.
The use of half integers instead of whole integers in the
Taylor expansion is required by the presence of diffusion.

Manipulating the equations we can obtain a general ex-
pression for the admittance,

Y = �1 + ��� i�s1�� + i���
�

f1 −
s2�� − i���

�
f2� . �62�

Using the low-frequency behavior for exponents �46�–�48�, it
results in an admittance that goes as �i��1/2 �as in a Warburg
impedance� except when f2=0; for this case the admittance
grows as �i�� �a capacitive behavior�.

To obtain a solution valid for low and high reaction resis-
tances, we assume temporarily, for the sake of the perturba-
tive expansion of the complete solution, that G and �1/2 are
of the same order. This can be motivated physically by the
known result that the changes in behavior happen when the
reaction resistance is comparable to the Warburg impedance
�19�. With this hypothesis, a complete analysis shows that
the Faradaic current density jF is of the same order as G.
Retaining only the leading terms for each quantity the vol-
ume equations and boundary conditions reduce to

n1 = 0, �2 = 0, f1 + �1 = 0, f2 + �n2 = 0, �63�

fs = �sf1, Y = − i��1 + ��f2/�, D0�1 − ��a0 + Nn2 = 0,

jF = n2
i�, jF = G�a0 − n2 − �1 + fs� . �64�

Solving this system, we obtain the leading terms for the dif-
ferent functions,

f1 =
1

1 + �s
�1 +

�Y

�1 + ��i�
�, f2 = −

�Y

�1 + ��i�
,

�65�

Y =
1

Z
, Z =

1

�1 + ��� 1

G
+

W
i�

�, W �
N

�1 − ��D0

+ 1 − � .

�66�

The XDL impedance Z can be written in dimensional form as

Z�dim� =
�D

�
Z̄ = Rct +

kBT

e2 � 1

c0
eqD0

+
�1 − ��3/2

2ceqD+
� 1

i�

�67�

and can be read as the association in series of the specific
charge transfer resistance with two Warburg impedances, one
corresponding to the neutral species and one to the charged
species. A similar result was also obtained by Olesen �26�.

The lowest order for XDL impedance �Eq. �67�� goes to
infinity when the Faradaic reactions are blocked. This can
happen if Rct→� �limit of small exchange current�, c0

eq or
ceq→0 �scarce reacting species�, and D0 or D+→0 �vanish-
ing diffusivities�. In terms of the dimensionless parameters,
if G→0, N→�, D0→0, or �→−1. If there are no Faradaic
reactions, the leading order of the XDL admittance �Eq. �66��
vanishes and we need to go to order �. We obtain in this case
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f1 =
1

1 + �s
+ O��1/2�, f2 =

�2i�

1 + �s
+ O���,

Y =
i��1 − �2�

1 + �s
+ O��3/2� , �68�

Z�dim��Rct→� =
�D

�
Z̄ =

1

i�
��D

�
+

�s

�s
� . �69�

The equivalent circuit in this limit is a capacitor with �di-
mensional� specific capacitance given by ��s /�s+�D /��−1,
i.e., the association in series of the compact and diffuse lay-
ers, with negligible contribution of the diffusion layer.

Another distinguished limit from the general, low-
frequency, solution corresponds to the facile kinetic regime,
characterized by a negligible charge transfer resistance �G
→��. In this limit the only factors blocking the reaction are
the Warburg impedances and we have

Z =
W

�1 + ��i�
, f1 =

1

1 + �s
�1 +

�

W
�, f2 = −

�

W
.

�70�

In this limit, the voltage drop in the diffusion layer is of the
same order as in the diffuse part and of opposite sign.

A uniform solution, valid for both high and low reaction
resistances and Warburg impedance, can be obtained from
the complete solution assuming temporarily that G
��1/2 /W��,

Y =
1 + �

1

G
+

W
i�

+
1 − �2

1 + �s
i� , �71�

f1 =
1 − f2

1 + �s
, f2 = −

�

i�� 1

G
+

W
i�

� +
�2i�

1 + �s
. �72�

This admittance corresponds to a Randles circuit �19� formed
by two elements in parallel: a capacitor and a series associa-
tion of a resistor and a Warburg impedance.

V. ELECTRO-OSMOTIC SLIP VELOCITY

A. General applied ac signal

Once we have calculated the solution for the electric po-
tential inside the XDL, as a function of the total voltage
drop, we can integrate Stokes equations to obtain an expres-
sion for the electro-osmotic slip velocity. The boundary con-
dition for the velocity at the OHP is that of no slip,

u = 0, w = 0. �73�

The slip velocity expression is obtained assuming that the
normal component of the velocity is very small, w=0, across
the whole XDL �since we have a thin layer� and that normal
derivative of the tangential velocity vanishes for large y,
�u /�y→0 �as the normal derivatives are much smaller out-

side the XDL than inside it�. After integration, the slip
electro-osmotic velocity is the limit of u for large y.

In the thin-layer approximation, the time average of the
normal component of the Stokes equation �Eq. �20�� can be
written as

��p�
�y

= − �
���

�y
− ��

��

�y
=

�2�

�y2

���

�y
+

�2��

�y2

��

�y
=

�

�y
�� ��

�y
�2� ,

�74�

which can be integrated once to give an expression for the
time-averaged pressure of electrical origin,

�p� = po + �
�

y �

�y
�� ��

�y
�2�dy

=�po + � ��

�y
�2�

�

y

= po + � ��

�y
�2

− �Y���2, �75�

where we have used Eq. �39� for the derivative at the outer
limit of the XDL. The expression for the pressure can be
inserted in the time average of the tangential Stokes equation
�Eq. �19�� to give the second derivative of the tangential
liquid velocity inside the XDL,

�2�u�
�y2 =

��p�
�x

+ ��
��

�x
+ �

���

�x
. �76�

Both the average pressure and the electric volume force are
combinations of exponentials that can be integrated to give
an expression for the slip velocity as a function of the volt-
age drop,

U = �
0

� ��
�

y �2�u�
�y2 dy�dy = A��

�

�x
����� + B��

���

�x

+ c.c., �77�

with A and B as certain functions of the parameters

A =
f1f1

�s1�s1 − s1
��

�s1 + s1
��2 +

f1f2
�s1�s1 − s2

��
�s1 + s2

��2 +
f2f1

�s2�s2 − s1
��

�s2 + s1
��2

+
f2f2

�s2�s2 − s2
��

�s2 + s2
��2 − �Yf2

�

s2
� +

Yf1
�

s1
� � − 3�Y�f1

s1
+

Y�f2

s2
� ,

�78�

B = f1 + f2. �79�

The term proportional to A in Eq. �77� connects the voltage
drop across the XDL with its tangential derivative. The term
proportional to B in Eq. �77� can be interpreted as an exten-
sion of the classical Helmholtz-Smoluchowski formula, as is
proportional to the tangential field just outside the XDL mul-
tiplied by the voltage drop between the OHP and the bulk,

UHS � �f1 + f2���
���

�x
+ c.c. = − ���diffuse + ��diffusion�Ex

�

+ c.c. �80�

It must be noted, however, that this extension includes the
contribution of the diffusion layer. The order of magnitude of
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the voltage drop across the diffusion layer compared to the
diffuse layer is critical. When f2 / f1 is of order unity, the
diffusion layer can reinforce, reduce, or even reverse the
electro-osmotic velocity produced by the diffuse layer �Fig.
4�.

The coefficients A and B that appear in the electro-
osmotic velocity �Eq. �77�� have the values, in the low-
frequency domain,

A = f2
�� f1 −

Y
− i�

� − f2�1 − i

2
f2

� +
3Y�

i�
�, B = f1 + f2.

�81�

We can see that if the voltage drop in the diffusion layer is
negligible �f2→0�, the coefficient A becomes negligible too
and the electro-osmotic velocity reduces to the usual
Helmholtz-Smoluchowski formula. This happens in particu-
lar in two important cases: for a totally symmetric electrolyte
��=0� and for perfectly polarizable electrodes. In the first
case, �=0 implies that f2=0. In the second case, the Faradaic
currents are blocked �Eq. �68�� and, in this limit, the coeffi-
cients become

A =
�2i�

1 + �s
+ O���, B =

1

1 + �s
+ O��1/2� . �82�

A is of order �1/2, negligible in front of B, and the electro-
osmotic velocity reduces again to the Helmholtz-
Smoluchowski formula

U =
1

1 + �s
����

��

�x
+ c.c.� . �83�

Another distinguished limit is the facile kinetic regime. In
this case, the coefficients become

A =
− 2�W − �2�3 + �s� + �4 + 3���1 + �s��i

2�1 + �s�W2 ,

B =
1

1 + �s
�1 −

�s�

W
� . �84�

We can see that the coefficient B, which produces a term in
the form of generalized Helmholtz-Smoluchowski formula
�80�, can change sign for large compact layer thicknesses �s

or asymmetries. This change in sign is at the origin of the
change in sign of the electro-osmotic slip velocity. However,
the coefficient A has a more complex structure and the net
result must be analyzed on a case by case basis since the total
voltage drop �� and the voltage outside the XDL, �, vary
in different forms for each electrode distribution and applied
wave form. In Sec. V B we will solve the particular case of a
traveling-wave voltage.

B. Case of a traveling-wave signal

Once we have a complete expression for the electro-
osmotic slip velocity as a function of the electric potential in
the bulk, we can proceed to apply it to a particular problem.
In what follows we consider the case of a single mode
traveling-wave signal. For this case, we take as typical tan-
gential length L the wavelength divided by 2�, so that the
dimensionless complex amplitude of the applied signal is

Vs =
V0

2
e−ix. �85�

In this problem, the bulk is electroneutral and the electric
potential outside the XDL verifies Laplace equation

�2�

�x2 +
�2�

�yo
2 = 0, �86�

with yo=�y as the bulk normal length. Solving Eq. �86� with
boundary condition �51� and the condition that the potential
vanishes far from the electrodes, we obtain the potential in
the bulk, just outside the XDL and total voltage drop,

��y� =
YV0e�−ix−yo�

2�� + Y�
, � =

YV0e−ix

2�� + Y�
, �� =

�V0e−ix

2�� + Y�
.

�87�

The resulting electro-osmotic velocity is independent of po-
sition and equal to

U =
�V0

2

2�� + Y�2
Im��A + BY� . �88�

For any value of frequency, U is obtained through the ex-
pressions of A and B �Eqs. �78� and �79�� as functions of f1,
f2, and Y, which are given by the solution in the thin-layer
approximation �see Appendix B�. The maximum electro-
osmotic velocity will occur for frequencies where Y =O���
�if it is of order 1 and U is order ��. In the ideally polarizable
limit, where Y = i�C, this maximum happens for ���. In
the facile kinetic regime, where Y is dominated by the War-
burg impedance Y ��i��1/2 and the maximum response lies
in the ���2 range, i.e., for lower frequencies. For interme-
diate cases, as we will see, we can have a peak at an inter-
mediate frequency or two coexisting maxima.

VI. RESULTS

A. Ideally polarizable electrodes

The first parameter we explore is asymmetry in the ab-
sence of Faradaic reactions �G=0�.

diffusion

diffuse
compactOHP

O( )ω
−1/2

O(1)

(a) (b) (c)

FIG. 4. �Color online� Contributions to the electro-osmotic ve-
locity, �a� f2� f1 and sgn�f2�=sgn�f1�, �b� f2� f1 and sgn�f2�=
−sgn�f1�, and �c� f2� f1 and sgn�f2�=−sgn�f1�, where f1 and f2 are
proportional to the voltage drop across the diffuse and diffusion
layers, respectively. In the first and second cases, the effect of the
diffusion layer is small and cannot reverse the flow. In the third
case, the diffusion layer stresses can overcome the diffuse layer
ones and produce flow reversal.
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Figure 5 shows the velocity as a function of frequency �
for different compact layer thicknesses �s. The combined
effect of compact layer thickness and asymmetry is shown in
Fig. 6. We employ the nondimensional frequency �, which
is given by the product of the angular frequency times the
relaxation time of the RC circuit formed by the double layer
and the bulk, �= ���dim�� /���L /�D�=��1−�2� /�.

We can see that the effect of asymmetry is too small to be
considered even for high values of �.

From this result we established previously that the diffu-
sion layer has negligible contribution to both the XDL im-
pedance and the total voltage drop, i.e.,

U =
V0

2 Im�Y/��
2�1 + �s��1 + Y/��2

. �89�

For this case, the XDL admittance, which does include con-
tributions from the diffusion layer in addition to the double
layer, reduces to a pure capacitor, Y = i��1−�2�= i��, and
the slip velocity reduces to the well-known case U
=�V0

2� / �2�1+�2��, with �= f1=1 / �1+�s� �9�.

B. Faradaic currents with and without asymmetry

If we include Faradaic currents in the model, the number
of parameters is increased in three: the reaction conductance
G, the relative concentration N, and the neutral diffusivity
D0, although, as we stated previously, the combination

N /D0
1/2 works as a single parameter. In the case of a sym-

metric solution ��=0� we see that the presence of Faradaic
currents produces a secondary bell at lower frequencies �Fig.
7�. The presence of a thick compact layer reduces the voltage
drop across the diffuse layer, lowering the electro-osmotic
velocity. In addition, the primary maximum is displaced to
higher frequencies, but the frequency of the secondary maxi-
mum �associated to the Warburg impedance� is not affected.
Notice that we use G /� as parameter that controls the reac-
tions rather than G. The parameter G /� is the reaction con-
ductance made nondimensional using the bulk scale L rather
than the Debye length, G /�=LK+ /2D+. The reciprocal of
G /� is the same parameter that was used in �19�, except for
the factor �1+��, to describe the nondimensional reaction
resistance Rs and, in this way, we can see that Fig. 7 is totally
coincident with previous results for �=0.

Figure 8 shows that the effect of reducing the equilibrium
concentration of neutral species �raising the value of N� or its
diffusivity is twofold: displaces the position of the secondary
maximum to higher frequencies and blocks the reaction until
the two maxima coalesce and the system is indistinguishable
from an ideally polarizable electrode.

Now, let us consider the combined effect of Faradaic cur-
rents and asymmetry. As we have stated previously, the pres-
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FIG. 5. �Color online� Slip velocity for equal diffusivities and
ideally polarizable electrodes for different compact layer thick-
nesses �s. Increasing �s results in smaller slip velocity and a dis-
placement of the maximum to higher frequencies.
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FIG. 6. �Color online� Slip velocity for ideally polarizable elec-
trodes, with different compact layer thicknesses and with and with-
out asymmetry. The effect of asymmetry is almost negligible in this
case of zero Faradaic currents.
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FIG. 7. �Color online� Slip velocity in the presence of Faradaic
currents, with �a� a small compact layer and �b� a large one, for
equal ion mobilities. When the resistance to reaction decreases there
appears a secondary maximum at low frequencies, associated to the
Warburg impedance and characterized, in dimensionless form, con-
dition �1/2��. For a thick compact layer, the primary maximum is
displaced and lowered compared with the case �s=0, as in Fig. 5,
due to the increase in compact layer thickness �notice the different
vertical scales�. The secondary maximum also reduces its ampli-
tude, but the position of the maximum is not greatly affected by the
change in �s.
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ence of asymmetry implies a charge density and a voltage
drop across the diffusion layer. It should be noted that we
must be careful in extending our analysis to ultralow fre-
quencies because then the diffusion layer thickness gets to be
of the order of the macroscopic bulk scale and the thin-layer
approximation ceases to be valid. Nevertheless, for the case
of a single mode traveling wave, it is possible to find a com-
plete linear solution, including the potential in the bulk �see
Appendix C�. Figure 9 shows the calculated slip velocity
using the complete and thin-layer models. We can see that, as
long as ��10−1 �that corresponds to a dimensional fre-
quency of around 10 Hz�, both curves coincide. The thin-

layer approximation produces a catastrophic region at ul-
tralow frequencies, which is not present in the complete
solution. In fact, the complete analysis shows that the slip
velocity goes to zero for very low frequencies, as should be
expected.

Despite the reduced frequency range of validity, the thin-
layer approximation has the advantage of being easily exten-
sible to different problems through the Robin-type boundary
condition �51� stated previously. Here, contrary to the con-
clusions in �27�, the thin-layer approximation and the full
linear solution coincide nicely for ��0.01−0.001.

Figure 9 shows a prominent feature of electro-osmotic
slip velocity under the combined effects of Faradic currents
and different mobilities: it predicts reverse flow since there
are ranges of frequencies where the curve is below the X
axis, and although these ranges are in the very low-frequency
region, they fall in the domain of validity of the thin-layer
approximation. Notice that the magnitude of the reverse flow
velocity is very small.

We now explore the effect of three different parameters
�reaction resistance, asymmetry, and compact layer thick-
ness� on the flow, with particular attention on the flow rever-
sal.

Figure 10�a� shows the effect of the reaction conductance
for an electrolyte with a negative asymmetry �=−0.60 �the
case of Na+OH−�, while Fig. 10�b� shows the effect for a
positive asymmetry of �=+0.64 �the case of H+Cl−�. We can
see that the reverse flow happens for high values of the con-
ductance G /� �the facile kinetic regime�. Only if the more
mobile ion is the reacting one, ��0, the region of negative
velocities includes frequencies � of order 1. This last point
is illustrated in Fig. 11, where we vary the asymmetry pa-
rameter � for a given reaction resistance. We can see that the
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system is very sensitive to changes in the mobility differ-
ences and that the reverse flow grows with the asymmetry.
For ��0, there is a region of reverse flow but it happens at
very low frequencies ��0.01, which may or may not be
observable because the oscillating terms are very important
and can mask the time-averaged force. For ��0, the region
of reverse flow includes frequencies that are typical of
ACEO ���1� and, therefore, can be observable.

If we consider the effect of the compact layer thickness
�Fig. 12� we see that for thin compact layers there is no
reverse flow and that the effect requires a certain thickness.

Combining these three factors, we find that we need a low
reaction resistance, a positive asymmetry �being the reacting
ion the more mobile�, and a thick compact layer. This result
can be understood from the analytical expressions in the fac-
ile kinetic regime �Rs→0 or G→��.

C. Facile kinetic regime

Next, we assume that G→� �i.e., that the reaction resis-
tance vanishes� so that the only factor blocking the reaction
is the diffusion of the reactive species. We obtained previ-
ously the XDL impedance and the coefficients A and B for
the general electro-osmotic velocity �Eq. �84��. Inserting

these in Eq. �88� we obtain the electro-osmotic slip velocity
in the facile kinetic regime,

U =
�V0

2��4 + 3�����1 + �s� + �W − �s���1 + ��2��

2�1 + �s���W + �1 + ��i��2
.

�90�

The minus sign in the numerator can change the direction of
the velocity if the asymmetry and the compact layer thick-
ness are large enough.

An easier explanation can be argued considering the case
of a bath of neutral species �N=0�, where the only Warburg
impedance comes from the charged species, so that W=1
−�. In this case, the low-frequency solution �Eq. �70�� im-
plies that the voltage drop across the diffusion layer is of
opposite sign to that of the diffuse layer. In particular

f1 �
1

�1 − ���1 + �s�
, fs �

�s

�1 − ���1 + �s�
, f2 � −

�

1 − �
.

�91�

The coefficient B that gives the generalized Helmholtz-
Smoluchowski contribution to the slip velocity reduces to

B =
1

1 + �s
�1 −

�s�

1 − �
� �92�

and changes sign if ��1 / �1+�s�. Given the typical values
of � in nature, the ratio 1 / �1+�s� should be small in order to
have this change of sign or, equivalently, �s should be much
greater than 1.

D. Relation to experimental values

In order to compare with experimental results, we should
assign specific numerical values to the different parameters
of the linear theory. García-Sánchez et al. �21� showed
changes in pH for typical signals of reverse flow and it was
inferred that chemical reactions of the H+ ion were taking
place at the electrodes. It was also assumed that the majority
of positive ions near the electrodes were H+ ions. Therefore,
we are going to consider in our linear model that the binary
electrolyte is HCl with a concentration of 0.1 mM. The dif-
fusivity asymmetry for the pair H+Cl− has the value �=
+0.642 �from �28��, showing that the hydrogen ion is much
more mobile than the chloride ion. For a 0.1 mM solution at
300 K, the Debye length is �D= ��kBT /2e2ceq�1/2�30 nm
while the conductivity of the solution is �=�D / ��D

2 �1
−�2���4.4 mS /m. For the four-phase electrode array used
in experiments, the wavelength was 160 	m, which leads to
L=160 / �2�� 	m�25 	m as the typical length �therefore,
�=1.2�10−3�. The characteristic angular frequency used to
scale the applied signal frequency is �0=�D� /�L
�7400 s−1 �f0=�0 /2��1200 Hz�. For this frequency, the
thickness of the diffusion layer is in the range of �D /�0�1/2

�0.68 	m. The value of the parameter �s is more difficult
to estimate since requires knowledge of the internal structure
of the double layer. We are going to choose a typical value of
�s=4, which was used in Refs. �12,29,30� in order to fit the
predictions of the linear model to the experimental velocities.
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We set the value of the voltage amplitude to 1 V, which gives
a nondimensional voltage V0�40. Since we are considering
an aqueous solution and the charged reacting species is hy-
drogen H+, the neutral species is just water. In this case, we
can make N�0, i.e., the ratio of ion concentration �H+� to
neutral species concentration �water� is negligible. With
these parameters, we obtain the graph shown in Fig. 13. For
a charge transfer resistance Rct=10−4 � m2 the velocity
around 1 kHz is in the direction of the reverse flow and of
the order of 150 	m /s. This value of the charge transfer
resistance is much smaller than the typical bulk specific re-
sistance �L /�=57�10−4 � m2� and, therefore, in the limit
of facile kinetics. The computed reverse flow appears in the
range of typical frequencies of the experimental observa-
tions, showing a decrement with increasing frequency in
qualitative agreement with experiments. The velocity ampli-
tudes computed with this set of parameters are high enough
to be observable and, therefore, the mechanism analyzed
here �i.e., electrical forces in the diffusion layer due to dif-
ferent ion mobilities� should be considered as a candidate to
explain the observed reverse flows in TWEO experiments.

VII. CONCLUSIONS

The present study shows that the linear analysis can pre-
dict reverse flow in traveling-wave electro-osmosis if three
conditions occur simultaneously: the Faradaic reactions are
facile, the mobilities of the species are different �with the
reacting ion as the most mobile one�, and the compact layer
is not very thin compared to the diffuse layer.

The difference in mobilities is necessary for charge and
voltage drop to exist in the diffusion layer above the double
layer. This voltage drop can be of opposite sign to that across
the diffuse layer and then can reverse the flow if it is large
enough.

The facile kinetic regime relates the behavior of the
mean ion concentration to the charge density, making the
voltage drop across the diffusion layer of the same order as
the diffuse one. In the opposite case, of an ideally polarizable
electrode, ��diffusion, albeit present, is much smaller than
��diffuse and cannot produce flow reversal.

Finally, the presence of a thick compact layer reduces the
voltage drop across the diffuse layer since most of the volt-

age drop in the double layer happens at the compact layer.
The combination of the three factors together allows for the
occurrence of flow reversal. The characteristic frequencies at
which the maximum reversal occurs are low and associated
to the Warburg impedance.

We acknowledge that this linear model cannot be the
whole explanation of the observed flow reversal in TWEO,
which is clearly a nonlinear phenomenon, happening only
when a certain voltage threshold is reached. However, the
fact that it predicts flow reversal for frequencies typical of
experiments is important. It also requires that the more mo-
bile ion is the reacting one, which is supported by the experi-
mental observation of production of H+ at the electrodes for
typical voltages of reversal �21�. All these facts suggest that
this model can be part of the explanation. Our solutions for
reverse flow require that the reaction resistance is small. This
is a regime that can be reached by increasing voltage, given
that the exponential growth of Faradaic currents with voltage
means that the equivalent reaction resistance gets to be very
small. The experimental observations of flow reversal in
TWEO for voltages greater than a certain threshold �20,21�
suggest the relation with the onset of Faradaic reactions.

The flow reversal described here could be related to the
experimental observations by Gregersen et al. �14�. In par-
ticular, the velocity dependence with frequency at constant
voltage for 4 mS/m KCl �inset in their Fig. 4�a�� is reminis-
cent of the reverse flow behavior shown here in our Figs.
10�b� and 12. The analysis developed on our work for TW
potentials should then be extended to the case of ac poten-
tials applied to asymmetric pairs of electrodes.

An important feature of our solutions is that it is required
�s to be large in order to obtain reverse flow. Typical values
of capacity of diffuse and compact layers do not produce
�s�1 except for high electrolyte conductivity. However, ex-
periments in ac electro-osmosis �3,9,12,29,30� show that the
linear theory overestimates the slip velocity or, otherwise,
that the voltage across the diffuse layer is less than expected.
The presence of steric effects �15–17,30� at voltages much
greater than kBT /e=0.025 V could be important in this case.
The ion crowding of the double layer at high voltages may
be modeled as a condensed layer of variable thickness. This
condensed layer would act as the compact layer in our prob-
lem: not contributing to the electro-osmotic velocity and thus
allowing the stresses in the diffusion layer to overcome the
stresses in the diffuse layer and reverse the flow.

We have performed the analysis in the thin-layer approxi-
mation. Although this approximation is questionable for very
low frequencies, it may provide an easier generalization to
different problems as the case of two coplanar electrodes or
arrays of electrodes subjected to four-phase signals, as the
ones used in the experiments, using boundary condition �51�
for the outer problem and inserting the result in Eq. �77� to
obtain the slip velocity.
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APPENDIX A: MATCHING CONDITION

The matching conditions �29� and �30� can be derived in a
general way using the matched asymptotic expansion method
�see, for instance, �31��. In this case, however, we can give a
simple geometrical interpretation �Fig. 14�.

We have to match the inner solution, �, valid inside the
XDL, which varies in a scale of order l, with the outer solu-
tion, �, which varies typically with a macroscopic length L,
much greater than l. In a first-order perturbative analysis, we
solve for each region with an error of the order of �= l /L.
The matching conditions are given by the requirement that in
an intermediate scale �much larger than l and much smaller
than L� both solutions coincide up to this order.

The one-dimensional equations inside the double layer re-
duce to a vanishing second derivative for the electric poten-
tial when we move from the XDL to the electroneutral bulk.
That means that the inner solution is a combination of expo-
nentially decreasing terms plus a linear behavior. We see that
just outside the XDL the inner solution is a straight line �
��0−Ey �y� l�.

The matching condition requires this straight line to coin-
cide with the outer solution on the same intermediate scale;
i.e., the straight line must be asymptotically tangent to the
outer solution evaluated at positions with y�L �i.e., effec-
tively at yo→0, being yo=y /L�. The slope and the intersec-
tion with the axis must be the same for both solutions,

lim
y→�

d�

dy
= − E = lim

y→0

d�

dy
, �A1�

lim
y→�

�� − y
d�

dy
� = �0 = lim

y→0
�� − y

d�

dy
� = lim

y→0
� . �A2�

APPENDIX B: VALUES OF THE COEFFICIENTS

The values for the fraction of voltage drops in Eqs.
�52�–�60� subjected to condition �43� can be calculated from
the admittance,

Y = �1 + ���2s1s2� a + Gb

c + G�d + eN0s0�� , �B1�

a = ��1 − ����2 − �2�2� , �B2�

b = − i���s + Ns0���2 − �2�2� + �� − i���2s1 + �� + i���2s2� ,

�B3�

c = �1 − �����2�2s1
3 − �s2

3 − �s��2 − �2�2�s1
3s2

3� , �B4�

d = − i�1 − ���2���2 − �2�2� + �s�� + i���2s1
3

+ �s�� − i���2s2
3� , �B5�

e = − i�s1
3�2�2 − s2

3�2 − �ss1
3s2

3��2 − �2�2�� , �B6�

through the expressions

f1 = f10 + f11Y, f2 = f20 + f21Y , �B7�

f10 =
1

P1M
, f20 =

1

P2M
, M =

1 + �ss1

P1
+

1 + �ss2

P2
, �B8�

P1 = i���� + i���s1, P2 = ��� − i���s2, �B9�

f11 =
1

Q1T
, f21 =

1

Q2T
, T = −

1 + �ss1

�sQ1
−

1 + �ss2

�sQ2
, �B10�

Q1 = �sP1 − �1 + �ss1�
��

1 + �
, Q2 = �sP2 + �1 + �ss2�

��

1 + �
,

�B11�

where

� =
1 + 1 − 4�2�2

2
, s1 = � + i�, s2 = 1 + i� − � .

�B12�

The rest of the quantities are obtained from the voltage drops
as

�1 = − �� + i��f1, n1 = −
i��

�
�1, n2 = −

� − i�2�

�
f2,

�2 =
i��

�
n2, �B13�
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fs = 1 − f1 − f2, a0 = −
N�s1n1 + s2n2�

D0�1 − ��s0
. �B14�

APPENDIX C: COMPLETE SINGLE MODE TRAVELING
WAVE SOLUTION

In the particular case of a single mode traveling-wave
electro-osmosis the problem can be solved completely, in-
cluding the potential in the bulk. The electric potential can be
written for this case as

� = � f1e−s1y + f2e−s2y +
Y

�
e−�y����x� , �C1�

where

���x� =
�e−ix

2�� + Y�
, ��x� =

Y

�
�� =

Ye−ix

2�� + Y�
�C2�

�the notation has been chosen to maximize the coincidence
with the thin-layer approximation�. The charge density and
excess in the mean concentration are formally the same as in
Eqs. �40� and �41�. The new exponents satisfy

si
2 = sTi

2 + �2, �C3�

with sT as the corresponding exponents in the thin-layer ap-
proximation, given in Eqs. �46�–�48�.

The system of equations for the coefficients is exactly the
same as in Eqs. �52�–�60�, hence the analytic solution is the
same as in Appendix B �using the new exponents, although �
is unchanged�.

The expression for the slip velocity is the same as in Eq.
�88� where now

Im��� + Y� =
�

2i
� f1f1

��s1
�2 − s1

2�
�s1 + s1

��2 +
f2f1

��s1
�2 − s2

2�
�s2 + s1

��2 +
f1f2

��s2
�2 − s1

2�
�s1 + s2

��2 +
f2f2

��s2
�2 − s2

2�
�s2 + s2

��2 +
Yf1

��s1
�2 − �2�

��s1
� + ��2 +

Yf2
��s2

�2 − �2�
��s2

� + ��2

−
Y�f1�s1

2 − �2�
��s1 + ��2 −

Y�f2�s2
2 − �2�

��s2 + ��2 � , �C4�

while the corresponding expression in the thin-layer approximation �with the appropriate exponents� is

Im��� + Y� =
�

2i
	 f1f1

��s1
�2 − s1

2�
�s1 + s1

��2 +
f2f1

��s1
�2 − s2

2�
�s2 + s1

��2 +
f1f2

��s2
�2 − s1

2�
�s1 + s2

��2 +
f2f2

��s2
�2 − s2

2�
�s2 + s2

��2 +
Yf1

�

�
�1 −

2�

s1
� � +

Yf2
�

�
�1 −

2�

s2
� �

−
Y�f1

�
�1 −

2�

s1
� −

Y�f2

�
�1 −

2�

s2
�
 . �C5�

The main differences between both expressions is given by the fact that in the complete linear solution s2 does not goes to zero
nor Y to infinity in the limit �→0, preventing the singular behavior for ultralow frequencies.
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